Ученые воссоздали плазму из равного количества материи и антиматерии
18 мая 2015 17:45

Материя, насколько мы знаем, бывает в четырех разных состояниях: твердом, жидком, газообразном и плазмой, которая представляет собой горячий газ, атомы которого лишены электронов.
Тем не менее есть также пятое экзотическое состояние: плазма материи-антиматерии, в которой наблюдается полная симметрия между отрицательными частицами (электронами) и положительными частицами (позитронами).
Это особое состояние вещества, как полагают, присутствует в атмосфере экстремальных астрофизических объектов вроде черных дыр и пульсаров. Считается также, что она была фундаментальной составляющей Вселенной в ее зачаточном состоянии, во время лептонной эры, которая началась примерно через секунду после Большого Взрыва.
Доля секунды
Одна из проблем одновременного создания частиц материи и антиматерии заключается в том, что они терпеть не могут друг друга — исчезают во вспышке света при встрече. Но поскольку это происходит не сразу, остается возможность изучить поведение плазмы в ту долю секунды, пока она еще жива.
Читайте также: Ученые воссоздали процесс фотосинтеза
Понимание того, как материя ведет себя в своем экзотическом состоянии, имеет решающее значение, если мы хотим понять, как развивалась наша Вселенная и, в частности, почему Вселенная, какой мы ее знаем, состоит преимущественно из материи. Этот момент вызывает недоумение, поскольку теория релятивистской квантовой механики предполагает, что у нас должно быть равное количество материи и антиматерии. Но поскольку мы наблюдаем себя и звезды, где-то случился перекос. Ни одна из современных моделей физики не объясняет расхождение.
Несмотря на фундаментальную важность для нашего понимания Вселенной, электро-позитронная плазма никогда не производилась до этого момента в лаборатории, даже в гигантских ускорителях частиц вроде БАК. Международная группа ученых из Великобритании, Германии, Португалии и Италии наконец решила разбить этот орех.
Вторгаясь в крошечное
Вместо того чтобы обратиться к огромным ускорителям частиц, ученые взяли ультраинтенсивные лазеры, доступные на Центральной лазерной установке в Лаборатории Резерфорда-Эплтона в Оксфордшире, Великобритания.
Используя камеру сверхвысокого вакуума с давлением воздуха, соответствующим одной сотой миллионной доли нашей атмосферы, ученые направили сверхкороткий интенсивный лазерный импульс (в миллиарды и миллиарды раз интенсивнее солнечного света на поверхности Земли) в газ азот. Импульс «срезал» электроны частиц газа и ускорил их до близкой к световой скорости.
Читайте также: Украинский химик получил от ЕС грант 100 тыс. евро
Затем пучок столкнулся с блоком свинца, который снова их замедлил. В процессе замедления они испустили частицы света, фотоны, которые образовали пары электронов и их античастиц, позитронов, в процессе столкновения с ядрами в образце свинца. Цепная реакция этого процесса привела к появлению плазмы.
На словах просто, на деле сложнее. Лазерный луч нужно было контролировать и направлять с точностью до микрометра, а детекторы должны были быть тщательно откалиброваны и экранированы — в этом безусловная заслуга ученых.
Эксперимент открывает перед учеными захватывающую ветвь физики. Помимо исследования важной темы асимметрии материи-антиматерии, наблюдая за тем, как плазма взаимодействует с ультрамощным лазером, мы также можем изучить, как эта плазма распространяется в вакууме и в разреженной среде.
Источник: hi-news.ru
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо зайти на сайт под своим именем.