Регистрация Войти
Вход на сайт

Квантовое чудо. Как будущее влияет на прошлое (ФОТО)

7 июня 2015 15:37
Квантовое чудо. Как будущее влияет на прошлое (ФОТО)Принцип причинности в самой простой формулировке гласит, что событие в прошлом может повлиять на событие в будущем. Однако некоторые физики считают, что в квантовом мире будущее может влиять на прошлое.

Квантовая легенда Почетный профессор Тель-Авивского университета, профессор калифорнийского Университета Чапмена и канадского Института теоретической физики «Периметр», Якир Ааронов более полувека занимается фундаментальными проблемами квантовой механики.

Группа физиков под руководством президента Израильского фонда фундаментальных исследований Якира Ааронова опубликовала в интернете препринт статьи под интригующим заголовком «Can a Future Choice Affect a Past Measurement’s Outcome?». Авторы утверждают, что состояние квантовой системы в данный момент времени влияет на состояние этой системы в прошлом, из чего следует, что на квантовом уровне закон причинности действует как в прямом направлении от прошлого к будущему, так и в обратном!

Эффект Ааронова-Бома

Поместим по одну сторону от экрана с двумя параллельными щелями источник моноэнергетических электронов, а по другую сторону установим детектор, который будет регистрировать периодические колебания плотности электронов, вызванные их интерференцией.

Усложним опыт — между экраном и детектором параллельно щелям поместим длинный тонкий соленоид с током. Магнитное поле замкнуто внутри соленоида, наружу оно не проникает. Казалось бы, электроны не могут никак его почувствовать, ведь на их пути от щелей к детектору его напряженность равна нулю. Однако Ааронов и Бом показали, что при включении тока интерференционные полосы сдвигаются, что и подтвердил Чамберс. Все дело в том, что на разность фаз волновых функций электронов, приходящих к детектору от обеих щелей, влияет векторный потенциал электромагнитного поля, а вот он вне соленоида отличен от нуля. То есть электроны чувствуют присутствие электромагнитного поля даже тогда, когда его не способен обнаружить ни единый классический прибор!

Слабые и сильные

Новая работа основана на утверждении Ааронова и его единомышленников, что квантовой системе соответствует не одна, как в стандартной версии, а пара волновых функций. Одна из них описывает эволюцию системы в прямом направлении по стреле времени, другая — в противоположном. Измерение, проведенное в настоящий момент, меняет значение этой функции в прошлом, что можно выявить предшествующими измерениями. Однако их необходимо вести, почти не возмущая состояния системы (скажем, используя очень слабые магнитные поля, если речь идет об ориентации спина электронов).

Но главное состоит в том, что каждый из результатов этих слабых измерений будет малоинформативен и практической пользы не принесет. А вот если провести множество таких измерений, ошибки скомпенсируют друг друга и в сухом остатке окажется реальная информация. Однако расшифровать ее можно лишь после выполнения нормального, сильного измерения (которое, если вернуться к примеру с электронными спинами, однозначно определит проекцию спина на направление магнитного поля).

А как обстоит дело с причинностью, коль скоро в заключительном опыте это направление можно выбрать произвольно? Дело в том, что такой выбор скажется на результатах сильного измерения, и, соответственно, на результатах дешифровки слабых измерений. Квантовая частица на пути от слабого измерения к сильному пребывает в суперпозиции различных состояний, одно из которых несет отпечаток проведенного слабого измерения, а второе будет выявлено в сильном измерении. Полученные в финале данные повлияют на информацию, которую можно извлечь из предшествующей работы. Таким образом, причинность все же сохраняется, хотя и в более ограниченном смысле, нежели в стандартной версии квантовой механики.

Сложный квантовый мир

Ааронов и его коллега по Тель-Авивскому университету Лев Вайдман обнародовали теорию слабых квантовых измерений в 1988 году. Она долгое время считалась чисто формальной конструкцией, однако в последние годы ее с успехом использовали в ряде лабораторий. Так, в 2007 году американские физики зарегистрировали ничтожную разницу в углах преломления входящих из воздуха в стекло световых пучков разной поляризации (оптический спиновый эффект Холла). Еще через два года другие исследователи этим же методом измерили поворот плоского зеркала на 23 триллионных доли градуса (если б оно отражало лазерный луч, пятно от него сдвинулось бы на лунной поверхности примерно на миллиметр). Так что физическая ценность слабых измерений уже доказана. Проблема в другом — можно ли с их помощью обосновать концепцию обратной причинности?

Сам Якир Ааронов, отвечая на этот вопрос «ПМ», подчеркнул, что модель двух волновых функций с разными направлениями времени не противоречит ни логической структуре квантовой механики, ни вытекающим из этой структуры соотношениям неопределенностей:

«Квантовые процессы содержат специфические шумы, которые в принципе невозможно полностью подавить. Слабые измерения очень мягко прощупывают эти шумы и дают возможность снизить их уровень. Именно так был выявлен целый ряд квантовых явлений, которые ранее не удавалось зарегистрировать. В этом нет никакой мистики, просто мы еще раз убедились, что квантовый мир устроен даже сложнее, чем думали Нильс Бор, Вернер Гейзенберг и остальные создатели квантовой механики». Правда, с мнением Ааронова многие физики решительно не согласны. Слово за экспериментаторами.

В слабости сила

Квантовое чудо. Как будущее влияет на прошлое (ФОТО)
Фотон в клетке


На схеме изображен эксперимент с интерференцией одиночного фотона. Слабые детекторы показаны серым цветом, а их измерения — подчеркиванием. Ещё

Для того чтобы получить осмысленный результат, требуется большое количество слабых измерений. Причем это могут быть измерения одной и той же частицы, скажем, одиночного фотона — если заставить его циркулировать в системе, состоящей из двух интерферометров Маха-Цендера, оснащенной сильными детекторами на начальных и конечных зеркалах. Благодаря этому имеется одинаковая вероятность выбора левого и правого плеча либо на начальном, либо на конечном этапе. Во всех случаях, когда фотон начинает путь как L0/R0 и заканчивает Lf/Rf (или наоборот), слабые измерения на зеркалах интерферометров с равной вероятностью подтверждают прошлые и будущие сильные измерения R1-Lf, L1-Rf, R2-L0, L2-R0. В отличие от сильных измерений, слабые не влияют на момент фотона и потому не «портят» интерференционную картину.
Источник: popmech.ru
Рейтинг статьи:
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо зайти на сайт под своим именем.
Оставить комментарий
Ваше имя: *
Ваш e-mail: *
Текст комментария:
Полужирный Наклонный текст Подчёркнутый текст Зачёркнутый текст | Выравнивание по левому краю По центру Выравнивание по правому краю | Вставка смайликов Выбор цвета | Скрытый текст Вставка цитаты Преобразовать выбранный текст из транслитерации в кириллицу Вставка спойлера
Код: Включите эту картинку для отображения кода безопасности
обновить, если не виден код
Введите код: