Регистрация Войти
Вход на сайт

Будущее беспилотных автомобилей и визуальные вычисления (ВИДЕО)

7 мая 2014 08:00

Будущее беспилотных автомобилей и визуальные вычисления (ВИДЕО)Никто из нас не любит пробки. Не так давно компания Google рассказала о том, что она делает в этом направлении, сместив фокус проекта Self-Driving Car с езды по автострадам на движение по городским улицам. В своем блоге представитель Google Chris Umson рассказал о том, чем NVIDIA занимается последние 20 лет, то есть о визуальных вычислениях. Именно они станут ключевым фактором развития передовых систем помощи водителю. Визуальные вычисления сегодня полагаются на вычислительную мощь графических процессоров (GPU), которые, по словам Криса, и дают возможность "одновременно обнаруживать сотни окружающих объектов", "обращать внимание", а также "никогда не уставать и не отвлекаться".

По его мнению, компьютерное зрение, обработка изображений и машинное обучение необходимы не только для того, чтобы создать внутренний "мозг" автомобиля, но и чтобы обрабатывать данные в реальном времени для мгновенного принятия решений на дороге.

Оснащенный лазером с углом обзора в 360 градусов, радаром и камерами наблюдения, беспилотный автомобиль Google Self-Driving Lexus RX 450H собирает огромное число визуальных данных - примерно 1 ГБ в секунду. Для сравнения - рядовой пользователь смартфона потребляет где-то 3-4 ГБ данных в месяц. Полученные данные необходимо интегрировать во встроенную карту, чтобы построить актуальную 3D-модель дорожного окружения.

Вот некоторые задачи, решение которых становится возможным благодаря визуальным вычислениям:

1)создание в реальном времени 3D-моделей на базе поступающих с датчиков данных;

2)отслеживание стационарных и движущихся объектов, таких как другие автомобили, светофоры, пешеходы и даже вылетевшие на проезжую часть мячи;

3)идентификация каждого объекта и определение степени их влияния на следующее решение системы управления автомобилем.

Благодаря массивно параллельной архитектуре, GPU как нельзя лучше подходит для решения подобных задач. Возможность параллельных вычислений делают GPU гораздо более эффективным инструментом, чем CPU, для обработки больших объемов данных.

Совершенно очевидно, что, если машина собирается водить за человека, нужно чтобы внутри нее был настоящий суперкомпьютер.

NVIDIA сосредоточена на области визуальных вычислений. Графические процессоры компании находятся в основе самых мощных суперкомпьютеров мира, таких, как Titan в Национальной Лаборатории Окриджа, "Ломоносов" в МГУ и не только. Важно, что сегодня супервычислительные возможности GPU становятся доступны и на индивидуальном уровне, в автомобилях и мобильных устройствах, делая возможным функционирование тех же продвинутых систем помощи водителю.

4pda.ru


Рейтинг статьи:
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо зайти на сайт под своим именем.
Оставить комментарий
Ваше имя: *
Ваш e-mail: *
Текст комментария:
Полужирный Наклонный текст Подчёркнутый текст Зачёркнутый текст | Выравнивание по левому краю По центру Выравнивание по правому краю | Вставка смайликов Выбор цвета | Скрытый текст Вставка цитаты Преобразовать выбранный текст из транслитерации в кириллицу Вставка спойлера
Код: Включите эту картинку для отображения кода безопасности
обновить, если не виден код
Введите код: